TY - JOUR
T1 - α1Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle
AU - Han, Chide
AU - Abel, Peter W.
AU - Minneman, Kenneth P.
PY - 1987
Y1 - 1987
N2 - Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on α1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction1. In many cells activation of α1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores2,3. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates4,5 or release of stored intracellular Ca2+ (ref. 3). However α1- adrenoceptors have recently been shown to have different pharmacological properties in different tissues6-9, and it has been proposed that different α1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx7,9,10-12. We here report evidence for two subtypes of α1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca 2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes.
AB - Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on α1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction1. In many cells activation of α1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores2,3. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates4,5 or release of stored intracellular Ca2+ (ref. 3). However α1- adrenoceptors have recently been shown to have different pharmacological properties in different tissues6-9, and it has been proposed that different α1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx7,9,10-12. We here report evidence for two subtypes of α1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca 2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes.
UR - http://www.scopus.com/inward/record.url?scp=0023177144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023177144&partnerID=8YFLogxK
U2 - 10.1038/329333a0
DO - 10.1038/329333a0
M3 - Article
C2 - 2442626
AN - SCOPUS:0023177144
SN - 0028-0836
VL - 329
SP - 333
EP - 335
JO - Nature
JF - Nature
IS - 6137
ER -