Methods for a blind analysis of isobar data collected by the STAR collaboration

STAR Collaboration

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


In 2018, the STAR collaboration collected data from 4496Ru+4496Ru and 4096Zr+4096Zr at sNN=200 GeV to search for the presence of the chiral magnetic effect in collisions of nuclei. The isobar collision species alternated frequently between 4496Ru+4496Ru and 4096Zr+4096Zr. In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data, STAR developed a three-step blind analysis procedure. Analysts are initially provided a “reference sample” of data, comprised of a mix of events from the two species, the order of which respects time-dependent changes in run conditions. After tuning analysis codes and performing time-dependent quality assurance on the reference sample, analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual ≈ 30 -min data-taking runs. For this sample, species-specific information is disguised, but individual output files contain data from a single isobar species. Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage. Following these modifications, the “frozen” code is passed over the fully un-blind data, completing the blind analysis. As a check of the feasibility of the blind analysis procedure, analysts completed a “mock data challenge,” analyzing data from Au + Au collisions at sNN=27 GeV, collected in 2018. The Au + Au data were prepared in the same manner intended for the isobar blind data. The details of the blind analysis procedure and results from the mock data challenge are presented.

Original languageEnglish (US)
Article number48
JournalNuclear Science and Techniques/Hewuli
Issue number5
StatePublished - May 2021

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering


Dive into the research topics of 'Methods for a blind analysis of isobar data collected by the STAR collaboration'. Together they form a unique fingerprint.

Cite this